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Preference learning has been a topic of research in many fields, including operations research, marketing, machine learning,
and behavioral economics. In this work, we strive to combine the ideas from these different fields into a single methodol-
ogy to learn preferences and make decisions. We use robust and integer optimization in an adaptive and dynamic way to
determine preferences from data that are consistent with human behavior. We use integer optimization to address human
inconsistency, robust optimization and conditional value at risk (CVaR) to address loss aversion, and adaptive conjoint
analysis and linear optimization to frame the questions to learn preferences. The paper makes the following methodological
contributions: to the robust optimization literature by proposing a method to derive uncertainty sets from adaptive question-
naires, to the marketing literature by using the analytic center of discrete sets (as opposed to polyhedra) to capture errors
and inconsistencies, and to the risk modeling literature by using efficient methods from computer science for sampling to
optimize CVaR. We have implemented an online software that uses the proposed approach and report empirical evidence
of its strength.
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1. Introduction
Learning preferences or utilities for items has been a topic
of interest for many years. The goal is to learn user prefer-
ences or utilities for a set of items given limited informa-
tion, with the final outcome being a recommendation made
to the user for the item with the highest utility.

Some of the earliest work in preference learning was in
the field of economics, in which the emphasis was placed
on learning how people behave when faced with a choice
between different options. One of the original theories was
that of expected utility theory, which claimed that ratio-
nal people maximize the expectation of a utility function
(Bernoulli 1738, von Neumann and Morgenstern 1944).
Since then, there have been several influential works dis-
puting the claims of expected utility theory, and instead
claiming that users behave in what could be considered
“irrational” ways (Kahneman and Tversky 1979, Tversky
and Kahneman 1991, Allais 1953). Evidence given in these
works shows that when describing their preferences, users
are often inconsistent, loss averse, influenced by the fram-
ing of the questions, and define outcomes with respect to a
reference point.

The field of preference learning has also recently become
more popular in machine learning and operations research
because of its importance in many Web applications,
including search and recommendation systems (Furnkranz
and Hullermeier 2011, Doyle 2004). Contrary to the eco-
nomics literature, the emphasis here is not placed on

observing how people behave, but on how to build a
preference model given limited data on preferences. This
model is often built to predict revenues from offering a
subset of products to customers, or to rank a fixed set
of options (Farias et al. 2013, Hullermeier et al. 2008).
Preference learning is also used to find weights for mul-
tiple criteria optimization problems, or multiple criteria
decision-making (MCDM) problems (Zionts and Wallenius
1976). Several interactive approaches to learning weights
in MCDM problems have been proposed (Miettinen et al.
2008), and there is some work on incorporating robustness
into these approaches (Roy 1998, Deb and Gupta 2005,
Wang and Zionts 2006). However, there has been limited
work on incorporating human behavior into the prefer-
ence learning and final weight selection (Dyer et al. 1992,
Wallenius et al. 2008).

Preference learning is also very popular in marketing,
in which preferences are typically learned through ques-
tionnaires (Toubia et al. 2003; Carroll and Green 1995;
Green and Srinivasan 1978, 1990). The understanding of
consumer preferences is a central problem in marketing,
and the most widely used method for doing so is by using
conjoint analysis or choice questionnaires.

Although there have been many methods proposed to
learn preferences, we feel that there is a need for a sys-
tematic and comprehensive methodology to algorithmically
derive preferences and ultimately make suggestions to users
that adhere to human behavior. In previous work, only one
utility function or preference order is typically assumed
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as a result of the preference learning process, but there
are often several that are consistent with the known data.
We propose a methodology to robustly collect preference
data from individuals, as well as ultimately make decisions
using robust optimization. Since the selection of a single
utility function or ranking order is often arbitrary, robust
optimization improves on this approach by using all of the
known information to make a decision. Our approach is
based on robust and integer optimization, conjoint analysis,
and risk measures.

Our overall approach is as follows. We assume that any
item or possible outcome x can be defined by attributes
x11 0 0 0 1 xn. We make the common assumption of a linear
utility function u4x5= u′x, for which we are trying to learn
the weights u. Prior to asking any questions, the weights
u belong in an initial uncertainty set U0 = 6−1117n, that is
we consider a family of possible utilities

u4x5= u′x1 u ∈U00

We present the user with two items in the first question,
x1 and y1, and ask the user to compare them, i.e., to tell
us if he prefers item x1, prefers item y1, or has no prefer-
ence (is indifferent). Based on his answer, we update the
uncertainty set and use mixed-integer linear optimization to
adaptively generate two new items to ask about in question
two, x2 and y2. After a number k of such adaptively chosen
questions, we have “decreased” the uncertainty set from U0

to Uk ⊆U0. At this point, we have a family of utilities

u4x5= u′x1 u ∈Uk0

The idea of using an adaptive questionnaire comes from
the marketing literature (Toubia et al. 2003, 2004). Adap-
tive questionnaires are increasingly being used, but the
results often suffer from response errors to early ques-
tions that influence the selection of later questions. Some
work has been done using complexity control or a Bayesian
framework to be robust to response error (Abernethy et al.
2008, Toubia et al. 2007). We instead approach the problem
using integer and robust optimization.

Note that we address two separate types of potential
noise in the data: human inconsistency and response error.
Inconsistency refers to contradictory responses even though
all of the responses are accurate. Response error refers to
incorrect responses, which may not cause inconsistencies,
but will increase the difficulty of capturing the user’s true
utilities. For these reasons, we also ask the user to indicate
if they “feel strongly” about their response to a question to
more accurately capture the incorrect answers.

To model loss aversion, we propose to solve the follow-
ing robust optimization problem:

max
x∈X

min
u∈Uk

u′x1

where X is the feasible space of outcomes, and k is the
number of questions that have been asked. Note that we are

taking the perspective that the adaptive process has reduced
uncertainty to the set Uk, and, as we are loss averse, we are
optimizing the worst utility within the uncertainty set Uk.

Additionally, we propose a robust optimization method
to control the trade-off between robustness and optimality.
In this method, we maximize the conditional value at risk
(CVaR�) of the utility function, which is defined to be the
expected value of the worst �% of the utilities (Rockafellar
and Uryasev 2000, Bertsimas et al. 2004, Krzemienowski
2009, Ogryczak 2014). Since the feasible set Uk is a pro-
jection of a mixed-integer set and therefore CVaR� of the
set is defined by an integral, we use random sampling of Uk

to approximate CVaR�. Specifically, we use the “hit-and-
run” method of randomly sampling points from a convex
body in �n, introduced by Smith (1984). This method has
been shown to perform well in practice, and allows us to
efficiently optimize CVaR� (Vempala 2005).

Artzner et al. (1999) formalized the idea of risk by defin-
ing coherent risk measures, and CVaR� is known as the
fundamental coherent risk measure. CVaR� is known as
a second-order quantile risk measure, a concept that has
been introduced in many ways by many different authors
(Artzner et al. 1999, Embrechts et al. 1997, Ogryczak 1998,
Rockafellar and Uryasev 2000). We use CVaR� and not
standard deviation or VaR� since we want to capture the
amount of losses incurred. Standard deviation measures
variation in both losses and gains, and value at risk (VaR�),
or the �-quantile of the utilities, only captures the number
of times you lose, not the severity of the losses. Addition-
ally, neither standard deviation or VaR� are coherent risk
measures, meaning that they violate basic properties that
capture the idea of risk. By adjusting the value of �, we are
able to select how conservative we would like our robust
solution to be.

Overall, we model human behavior in three main ways.
First, we model inconsistent behavior and account for the
importance of question framing in the way in which we
learn individual preferences. Second, we incorporate loss
aversion when making decisions for the individual. Lastly,
we account for reference dependence in the overall design
of the system. A quick and easy questionnaire to learn pref-
erences means that we can ask the questionnaire repeatedly
over time as the user’s reference point changes.

In summary, our method uses integer optimization,
robust optimization and CVaR�, and adaptive conjoint anal-
ysis and linear optimization. In our empirical study at the
end of this paper, we use CVaR� to compute the loss
aversion of each method quantitatively. We feel this paper
makes the following methodological contributions: (a) to
the robust optimization literature by proposing to derive
uncertainty sets from adaptive questionnaires, (b) to the
marketing literature by using the analytic center of discrete
sets (as opposed to polyhedra) to capture inconsistencies
and errors, and (c) to the risk modeling literature by using
efficient methods from computer science for sampling to
optimize CVaR�.
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This paper is structured as follows. In §2, we introduce
the adaptive questionnaire to inform the feasible set of util-
ities and the mixed-integer optimization model to address
human inconsistencies and response error. In §3, we present
the robust optimization approach to address loss aversion
and the new CVaR approach to provide less conservative
robust solutions. In §4, we give some empirical evidence to
support the use of our strategy in practice. Finally, in §5,
we provide some concluding remarks.

2. Building Self-Correcting Utilities Using
Adaptive Questionnaires

In this section, we will address how we adaptively ask the
user questions to learn a small set of possible utilities, while
using integer optimization to account for the inconsistent
behavior and response errors of people.

We will denote items by vectors of attributes with super-
scripts indicating the question. Thus, xi = 4xi

11 x
i
21 0 0 0 1 x

i
n5

is the vector of attributes for one item (item x) that is
asked about in question i. The goal of the optimization
problem is to suggest the best item for the user, given the
utilities u = 4u11 u21 0 0 0 1 un5 for the attributes of the items.
For example, the items could be different recipes, for which
the attributes are the ingredients in the recipes, or the items
could be different cars, for which the attributes are differ-
ent features that can be selected (leather seats, navigation
system, etc.). We will assume that there is a finite set of
possible attributes, and that the user’s utility function is lin-
ear in the attributes, u4x5 = u′x. Suppose we ask the user
about two items in question i, xi and yi. If the user indi-
cates that they prefer xi (or yi), then we say that xi > yi

(or yi > xi). If the user indicates that they are indifferent
between the two items, we say that xi = yi. Note that this is
the result of the user’s response; since the user could make
errors in their responses, this is the indicated preference of
the user, not necessarily the true preference of the user.

We address the inconsistency and response errors of
users through a self-correcting mechanism. This accounts
for the fact that although transitivity (if x > y and y > w
then x > w) is rational and ideal, people are often incon-
sistent. Additionally, people may incorrectly answer ques-
tions, resulting in response errors that add noise to the data.
Another possible reason is that the user actually has con-
flicting preferences. For example, the user might indicate
that she likes item x more than item y (x > y), item y
more than item w (y > w), but item w more than item x
(w > x). In this case, it is impossible to find utilities that
are consistent with all three responses.

In the adaptive questionnaire, we start with no informa-
tion about the user’s utilities, and we would like to adap-
tively learn his or her utilities with a series of comparison
questions. Furthermore, we would like to select the compar-
ison questions to ask the user so that the space of different
possible utility vectors is reduced as quickly as possible.
Since the response to each of the questions is unknown, we

would like to ask questions that give us the most informa-
tion possible regardless of the response. The method that
we will describe here builds on the method described in
Toubia et al. (2003, 2004), but we use integer optimization
to account for inconsistencies and response error in the pro-
cess of selecting the next question. Additionally, we make
some changes to the basic algorithm: we select the next
question that minimizes the distance to the analytic cen-
ter of the remaining feasible space, we add an indifferent
option, and instead of selecting a particular utility vector at
the end of the algorithm, we keep the entire feasible space
when we optimize over the utilities. We will discuss the
reasons for these changes at the end of this section.

Suppose that we have already asked the user k compar-
ison questions and received responses of the form xi > yi,
yi > xi, or xi = yi. Consider the case where the user indi-
cates that they prefer xi to yi (xi > yi) in question i.
We would like the total utility of item xi to be larger than
the total utility of item yi, or u′4xi −yi5 > 0. We model the
strict inequality here by using a small number � > 0, so we
have the constraint u′4xi −yi5¾ �. However, we would like
to account for the possibility of inconsistencies or response
error. We do this by introducing a binary variable �i for
question i. Instead of using the constraint above, we use
the constraints

u′4xi − yi5+ 4n+ �5�i ¾ �1

u′4xi − yi5+ 4n− �5�i ¶ n1

for question i if the user indicates that xi > yi, where n is
the total number of possible attributes. Similarly, we use
the constraints

u′4xi − yi5− 4n+ �5�i ¶−�1

u′4xi − yi5− 4n− �5�i ¾−n1

for question i if the user indicates that yi > xi. In both sets
of constraints, if �i = 0, then the utility vector is consistent
with the user’s response to question i (the first constraint
enforces the correct response and the second constraint is
redundant). If �i = 1, then we “flip” the constraint and
assume that the user either introduced an inconsistency or
made a response error (the first constraint becomes redun-
dant and the second constraint forces the inequality to flip).

If the user indicates that they are indifferent to question i
(xi = yi), then we add the constraints

−�¶ u′4xi − yi5¶ �0

In this case, we do not allow the inequalities to flip, since
we assume that an indifferent response is more likely to be
truthful. Even if the user actually prefers one item over the
other, the difference in utilities is probably small, which is
captured here. If an indifferent response is given for ques-
tion i, we set �i = 0. We will set � = 001 for the empirical
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evidence given in §4, but our model is robust to the value
of �.

Since we expect the user to respond incorrectly to only
a small fraction of the questions, we also use the constraint

k
∑

i=1

�i ¶ �k1

where � is a parameter that indicates the maximum fraction
of responses that we allow to be incorrect. For example,
if � = 001, we allow at most 10% of the user’s responses
to be flipped. In this work, we only give an upper bound
on the sum of the �i variables. This is due to the desire
to be robust to a certain number of response errors and
inconsistencies that could occur. An alternative would be to
add a term to the objective that penalizes “flipping.” How-
ever, this would minimize the number of response errors we
assume happen, instead of the number of response errors
that actually happen. We would like to be robust to a certain
number of response errors potentially occurring in practice.

These constraints provide a description of the feasible
space of utilities. Throughout the remainder of this paper,
we will also restrict the vector of utilities u to be in
6−1117n, without loss of generality.

We would now like to select the next question to ask
using this feasible space of utilities. We do this by finding
the analytic center of the feasible set for u, which is the
projection of a mixed-integer set. To find the analytic center
of this set, we solve the following optimization problem,
where we use the notation zi = xi − yi for the difference
between the attribute vectors of the items asked about in
question i:

maximize
k
∑

i=1
xi 6=yi

log4si5+

k
∑

i=1
xi=yi

6log4s1
i 5+ log4s2

i 57

+

2n
∑

j=1

log4tj5 (1)

s.t. −u′zi − 4n+ �5�i + s1
i = −�1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi1 (1a)

u′zi + 4n− �5�i + s2
i = n1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi1 (1b)

u′zi − 4n+ �5�i + s1
i = −�1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi1 (1c)

−u′zi + 4n− �5�i + s2
i = n1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi1 (1d)

u′zi + s1
i = �1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi = yi1 (1e)

−u′zi + s2
i = �1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi = yi1 (1f)

�i = 01 ∀ i ∈ 811 0 0 0 1 k9 s.t. xi = yi1 (1g)

−M�i ¶ si − s1
i ¶M�i1

i = 11 0 0 0 1 k s.t. xi 6= yi1 (1h)

−M41 −�i5¶ si − s2
i ¶M41 −�i51

i = 11 0 0 0 1 k s.t. xi 6= yi1 (1i)

−uj + tj = 11 j = 11 0 0 0 1 n1 (1j)

uj + tn+j = 11 j = 11 0 0 0 1 n1 (1k)

k
∑

i=1

�i ¶ �k1 (1l)

�i ∈ 801191 i = 11 0 0 0 1 k1 (1m)

si ¾ 01 i = 11 0 0 0 k1 (1n)

tj ¾ 01 j = 11 0 0 02n0 (1o)

The objective of (1) is to maximize the log of the
slack variables, as defined by the analytic center (Boyd
and Vandenberghe 2004). Constraints (1a)–(1g) represent
the question constraints defined previously in this section,
but with slack variables added in. Note that the slack vari-
ables are slightly more complicated than those in a typical
optimization problem for the questions for which the user
makes a choice. In our formulation, each question defines
two constraints, but only one of them is nontrivial, depend-
ing on the value of �i. If �i = 0, then the first question
constraint, (1a) or (1c), defines the feasible utilities for that
question, so we would only like to consider the slack vari-
able for the first constraint (s1

i ), when maximizing the sum
of the log of the slacks. If �i = 1, then the second ques-
tion constraint, (1b) or (1d), defines the feasible utilities for
that question, so we would only like to consider the slack
variable for the second constraint (s2

i ), when maximizing
the sum of the log of the slacks. Constraints (1h)–(1i) use
the “big-M” approach to set si = s1

i or si = s2
i , depending

on the value of �i, where si is the slack variable that con-
tributes to the objective. The remaining constraints define
the feasible region as described previously.

In practice, we solve this problem by first finding a
strictly interior feasible point and then using Newton’s
method (or a suitable approximation of Newton’s method)
to iteratively compute the analytic center (for a more
detailed explanation, Toubia et al. 2003, 2004). Note, how-
ever, that unlike Toubia et al. (2003, 2004), we compute
the analytic center of a set that involves continuous and
discrete variables.

Denote the optimal solution for u, or the analytic cen-
ter, by c∗. To try and cut the feasible region as much as
possible, we select as the next question the one whose
hyperplane is as close to c∗ as possible. This is the solution
to the following problem:

i∗ = arg min
i

�4c∗5′zi�
�zi�

1
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where the minimization is over all possible questions zi =
xi − yi between two items xi and yi that can be asked.
Then question k + 1 is defined by zi

∗

. Note that although
this problem requires an enumeration of all possible ques-
tion pairs (O4n25), it is fast for reasonably sized practical
problems (hundreds of items and attributes). After asking
question k+1 and receiving the response, we add two new
question constraints and a variable �i to (1) and repeat the
procedure described here to find question k+ 2.

At any point, we may want to stop asking questions,
or the remaining feasible region might be so small that
it is impractical or unproductive to continue asking ques-
tions. A common strategy is to compute the analytic center
one last time, and use this as an estimate for the utilities.
We propose a new approach that uses robust optimization
over the entire feasible set, which we describe in §3.

In addition to the methodological change of finding the
analytic center of a mixed continuous and discrete set, we
made a few additional changes to the methodology pro-
posed in Toubia et al. (2003, 2004). The first is that we
select the next question that minimizes the distance to the
analytic center of the remaining feasible space, instead of
selecting a hyperplane that goes through the analytic center
and is parallel to the shortest axis of the bounding ellipse
as proposed by Toubia et al. (2003, 2004). The reason for
this change is that we assume that we have a fixed set of
items that we can ask about. We do not have the freedom
to construct the best possible item to ask about, but instead
have to pick from one of the fixed options. This means
that we are not able to ask a question that necessarily goes
through the analytic center of the polyhedron and is paral-
lel to the shortest axis of a bounding ellipse. By selecting
the question that has a hyperplane closest to the analytic
center, we are using a variation of the idea proposed by
Toubia et al. (2003, 2004), with the same goal of reduc-
ing the feasible space by as much as possible with each
question, regardless of the response given by the user.

We also add the option for a user to answer that they
are “indifferent” between the two items, instead of forc-
ing the user to pick between the two items. This adds an
extra level of complexity to the problem, but also makes
the questionnaire more user-friendly.

Additionally, instead of selecting a particular utility vec-
tor at the end of the algorithm, we keep the entire feasible
space when we optimize over the utilities. The reason for
this change is that we would like our approach to be more
robust to error. We discuss this further in the next section.

2.1. Adding a “Feel Strongly” Option

In (1), we assume that all questions are equally likely to
contain response errors (unless the user selected the indif-
ferent option) and thus any question constraints can be
flipped. However, it is more likely that the user “feels
strongly” about some responses, and is more ambivalent
about others. We add an additional option for the user to
indicate that they feel strongly about a response, in which

case we do not include constraints (1b) or (1d) of (1).
By doing this, if �i = 1, the only constraint for question i
becomes trivial, and thus we are not considering that ques-
tion when computing the utilities. We do not want to force
the inequality to flip, since the user felt strongly about their
response, but we may need to relax the constraint because
of inconsistencies in the responses.

Thus, when faced with two items, xi or yi, the user can
indicate that (a) he prefers xi over yi, (b) he prefers yi over
xi, (c) he strongly prefers xi over yi, (d) he strongly prefers
yi over xi, or (e) he is indifferent. We will denote a strong
preference for item xi over item yi by xi >> yi.

With this additional option, we solve (1) with constraints
(1a)–(1d) replaced by the following constraints:

−u′zi − 4n+ �5�i + s1
i = −�1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi or xi >> yi1

u′zi + 4n− �5�i + s2
i = n1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi1

u′zi − 4n+ �5�i + s1
i = −�1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi or yi >> xi1

−u′zi + 4n− �5�i + s2
i = n1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi1

s2
i = 01 ∀ i ∈ 811 0 0 0 1 k9 s.t. xi >> yi or yi >> xi0

(2)

Note that we set s2
i = 0 if the user feels strongly about

the response to question i, since we do not have a second
constraint. By using the new constraints (2), we are able to
correct for inconsistencies or errors in the responses, while
decreasing the chance of violating the inequalities that we
know the user feels strongly about, and are therefore most
likely to be correct.

3. Loss Averse Solutions with
Robust Optimization

Up to this point, we have been concerned with estimating
utilities. However, our main concern is with selecting the
appropriate item in order to maximize a user’s utility sub-
ject to a set of constraints on the items. This is a common
problem in many applications; a decision needs to be made
among a set of items, and a natural goal is to maximize
utility. This problem can be modeled by the following opti-
mization problem:

maximize u′x

s.t. x ∈X1

where X is our feasible set, u is our utility vector, and each
possible choice is modeled by a vector of attributes denoted
by x ∈ X. Note that we have not made any assumptions
regarding the feasible set X.
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This optimization problem assumes that the utility vec-
tor u is fixed, but in many situations the utility vector is
unknown. In the previous section, we proposed a strategy
for learning u which, after a number k of questions, gives
us a feasible region that is continuous in u and discrete
in Ô. Denote by Uk the feasible set of u for all possible
values of Ô after k questions (note that we will not use the
feel strongly option throughout this section, but the formu-
lations can easily be extended to include it):

Uk
=

{

u ∈�n
�u′zi + 4n+ �5�i ¾ �1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi1

u′zi + 4n− �5�i ¶ n1

∀ i ∈ 811 0 0 0 1 k9 s.t. xi > yi1

u′zi − 4n+ �5�i ¶−�1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi1

u′zi − 4n− �5�i ¾−n1

∀ i ∈ 811 0 0 0 1 k9 s.t. yi > xi1

−�¶ u′zi ¶ �1 ∀ i ∈ 811 0 0 0 1 k9 s.t. xi = yi1

�i = 01 ∀ i ∈ 811 0 0 0 1 k9 s.t. xi = yi1

−1 ¶ ui ¶ 11 i = 11 0 0 0 1 n1
k
∑

i=1

�k ¶ �k1

�i ∈ 801191 i = 11 0 0 0 1 k
}

0

In previous work, the standard approach was to select a
particular estimate for u out of all possible choices in Uk,
where the most typical choice has been to select the ana-
lytic center of Uk. Here, we instead solve a robust opti-
mization problem that considers the entire set Uk:

max
x∈X

[

min
u∈Uk

u′x
]

0 (3)

For a fixed x ∈ X, the inner optimization problem selects
the worst possible utility vector that is in the set Uk. Since
the set Uk came from the adaptive questionnaire, it is pos-
sible that any vector in Uk is the user’s true utility vector,
and so we are looking at the worst-case outcome. The outer
optimization problem then tries to find the best item x ∈X
given this worst-case approach. This problem is thus robust
in the sense that we are trying to maximize the worst-
case scenario, and so we aim to be robust to error. This
approach is typically referred to as Wald’s maximin model
(Wald 1945) and is one of the most important models in
robust optimization. Note that for a given x ∈X, the objec-
tive of (3) is a concave function, which captures the risk
adverse utilities often exhibited by individuals.

Typically, this problem is solved by taking the dual of the
inner problem, resulting in an optimization problem that is
no more difficult than the original optimization problem
(Bertsimas and Sim 2004). However, in our case, the inner
problem is a mixed-integer optimization problem, since the
�i variables are binary. Since in many applications, the
set X only specifies that one item should be selected, we
will solve this problem by enumeration when we report
empirical results in §4. Thus, for each possible x̄ ∈ X, we
solve

min
u∈Uk

u′x̄1

and then select the x for which the objective function value
is the largest. This problem can be solved with mixed-
integer optimization techniques.

3.1. A Robust Approach Using CVaR

Although the robust optimization approach provides a loss
averse method, it tends to produce solutions that may be
too conservative. In this section, we present a method to
model loss averse behavior with robust optimization using
the concept of conditional value at risk (CVaR), or expected
shortfall (Artzner et al. 1999). CVaR is a risk measure often
used in finance to evaluate the market risk of a portfolio.
The “CVaR at the �% level” or CVaR� is the average value
of the worst �% of the cases. It is an alternative to value
at risk (VaR�), the �-quantile, but it is more sensitive to
losses (Artzner et al. 1999). Mathematically, CVaR can be
defined as follows:

CVaR� =
1
�

∫ �

0
VaR� d�0

The motivation for this approach is similar to the trade-
off proposed by Bertsimas and Sim (2004), in that we
would like to adjust the conservatism of the approach.
The analytic center approach often yields better objective
function values on average, but also tends to have greater
losses in the domain of losses than the robust version (it
is not very loss averse). By using CVaR, we are able to
maintain the best features of both approaches. This will be
shown in the empirical evidence in §4.

We would like to maximize the CVaR of the possible util-
ity vectors in the space of feasible utilities Uk. Since this
region includes discrete values for �i, we first fix these val-
ues to the values at the analytic center, which is found after
the final question is asked using the procedure described
in §2. We assume that these values capture good values
for �i, but in practice they could be varied between all
possible values.

Since precisely modeling CVaR would require an integral
in the objective, we use random sampling to approximate
the problem. Our feasible region Uk becomes a polytope
when we fix the values of �i. There are several different
ways to randomly sample from a polytope (Vempala 2005).
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We use the “hit-and-run” algorithm, starting from the ana-
lytic center (which has been computed in the computa-
tion of Uk) to find N different utility vectors u11 0 0 0 1 uN ∈

Uk. The hit-and-run algorithm was introduced by Smith
(1984), and is defined as follows:

• Pick a uniformly distributed random line l through the
current point.

• Move to a uniform random point along the chord
l∩Uk.

Smith (1984) proved that the stationary distribution of
the hit-and-run walk is the uniform distribution over Uk.
Lovász and Vempala (2006) showed that the hit-and-run
walk mixes (becomes stationary) in O4n4 ln34n/d55 steps
starting from a point at distance d from the boundary,
and is thus a polynomial time algorithm. Other random
walks, including the well-known “ball walk,” can poten-
tially take exponentially many steps from some starting
points. In addition to hit-and-run being a polynomial time
algorithm, it is also known to perform very well in practice.

Given the random sample of utility vectors 8u11 0 0 0 1 uN 9,
we then maximize the CVaR of this representative sample
of utility vectors using the following robust optimization
problem (Ogryczak 2014):

max
x∈X

min
y

1
�N

N
∑

j=1

4u′

jx5yj

N
∑

j=1

yj = �N

0 ¶ yj ¶ 11 j = 11 0 0 0 1N 1

(4)

where � controls how conservative, or loss averse, we
would like to be. If we set � = 1/N for N → �, this is
equivalent to the robust approach.

We can represent this problem as a linear optimization
problem by taking the dual of the inner minimization prob-
lem (Bertsimas et al. 2011). We define dual variables �
and w. Then, the problem can be reformulated as

max
x1 �1w

�+
1
�N

N
∑

j=1

wj

�+wj ¶ u′

jx1 j = 11 0 0 0 1N

wj ¶ 01 j = 11 0 0 0 1N

x ∈X0

(5)

Although our approach requires random sampling of the
feasible region, it successfully provides loss averse solu-
tions without being overly conservative. We will show the
benefits of this formulation in §4.

4. Empirical Evidence
In this section, we present evidence that a self-correcting
and robust approach is feasible, realistic, and appealing

in practice. We present empirical evidence comparing the
robust approach, the analytic center approach, and the
CVaR approach.

We have implemented an online software that uses the
proposed approach to select preferred recipes for the user
of a personalized dieting application. Users are asked to
answer comparison questions as described in §2 given the
title of the recipes, pictures, descriptions of the recipes,
and the ingredients. They are also given the option to indi-
cate that they strongly prefer one recipe over the other.
We would like to learn the user’s utilities for the ingredients
(or other attributes) of the recipes, and then ultimately sug-
gest a meal plan that is appealing to them. In this section,
we present empirical evidence supporting our methodology
using this online software.

To compare the validity of the different approaches, we
performed the following experiment. We first generated a
“true” utility vector u∗ that a user could have, by ran-
domly sampling a feasible utility vector from the initial
feasible space of utilities U0 = 6−1117n. Using this true
utility vector, we generated the appropriate answers for a
fixed number of comparison questions, where the questions
were selected using the adaptive questionnaire described
in §2. For each question, we inserted some normally dis-
tributed noise � with mean zero and standard deviation � ,
into the response to that question. The reason for this is that
we assume people make errors in their responses, either
because of inaccurate responses, or ambiguous preferences.
Thus, for � ∼N401�5, if

4u∗5′zi + � ¾ �̂1

we record the user’s response to question i as xi > yi. If

4u∗5′zi + � ¶−�̂

we record the user’s response to question i as yi > xi.
Lastly, if

−�̂¶ 4u∗5′zi + � ¶ �̂

we record the user’s response to question i as xi = yi.
In the empirical evidence presented in this section, we

let �̂ = 0002. This causes zero to four indifferent responses
for every 10 questions, depending on the true utility vector
of the user. We assume here that although some indiffer-
ent responses might be made, the user will select between
the two options most of the time. We have two reasons
for this. The first is that the methodology proposed here is
designed to ask comparison questions. If the user is answer-
ing indifferent for the majority of the questions, a com-
parison questionnaire is probably not appropriate for the
specific application. The second reason is that our method-
ology is designed to handle response errors and inconsisten-
cies, partly because we are forcing the user to pick between
the two options.
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Note that it is the self-correcting property of our
approach that insures the feasibility of the algorithm regard-
less of how much noise is inserted into the responses. Even
if inconsistencies are created, with � large enough, the fea-
sible space Uk will remain nonempty. However, recall that
the adaptive questionnaire is designed so that inconsisten-
cies will be avoided as much as possible, so we expect
a small number of inconsistencies, if any. Since the next
question is selected as one that cuts the current feasible
space as close as possible to the analytic center, it will
always leave a remaining feasible space unless the clos-
est cut to the analytic center does not go through the cur-
rent feasible space at all (leaving an empty feasible space
with one response to the question, and the same feasible
space as before with the other response to the question).
Although unlikely, if this does happen and the new feasible
space turns out to be empty, the questionnaire will stop and
the most recent nonempty feasible space will be the final
feasible space. Throughout the empirical studies performed
here, this situation has never occurred.

Using these responses, the ultimate optimization prob-
lem (that of finding an appealing meal plan for the user
of a personalized dieting system) was then solved using
the different methods discussed in this paper: the tradi-
tional analytic center approach with “slack” variables to
account for inconsistencies, but without the self-correcting
mechanism (Toubia et al. 2003, 2004), the new analytic
center approach with the self-correcting mechanism pre-
sented in (1), the robust approach given by (3), and the
CVaR approach given by (5). We will denote these methods
by AC, ACSC, Robust, and CVaR, respectively. Note that
there are two different analytic center approaches here—the
traditional approach without accounting for inconsistencies
and responses errors (AC), and the new approach with the
self-correcting mechanism (ACSC).

We report the results of these methods as follows.
We first rank all of the items (recipes) according to the
“true” utilities, u∗. Thus, the item with the highest true
utility gets rank 1, and the item with the lowest utility
gets rank 102 (the total number of recipes in the data set).
We then find the top five items according to the different
optimization methods. The reason for this is that in this
application and in many others, we will often suggest sev-
eral items to the user that we think they will like. In the
case of recipes, we will often want to make several sug-
gestions since the user may like many different types of
recipes, and we would like to make sure we suggest one
that they are interested in on any particular day. There-
fore, after solving the optimization problem corresponding
to each of the methods, we eliminate the optimal solution,
and solve again to get the next best solution. We repeat
this three more times to get the top five solutions. We can
then compare the selected solutions with the true rank of
the items. We report the average true rank of the top five
solutions found. Therefore, smaller values are preferred.

Figure 1. Plot of the average values for selective meth-
ods and parameters.
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Throughout the rest of this section, we report results for
10 different true utility vectors (or 10 different “users”),
and 200 runs per user for each value of � > 0 to account
for the noise in the responses. Our data set consisted of
102 recipes for the main dish at dinner (so that the recipes
were comparable), and were described by 186 attributes
(the ingredients of the recipes). An additional parameter to
consider in this approach is the number of questions to ask.
We will report results for 10 questions, since it is a realistic
number of questions that might be asked in an application.

The complete numerical results are presented in
the appendix (available as supplemental material at
http://dx.doi.org/10.1287/opre.2013.1209). Figures 1, 2,
and 3 show these results as functions of the response
noise � . The particular parameter choices shown in the fig-
ures were selected as representative values that one might
use in practice, but can also be selected through cross-
validation.

Figure 1 gives the average rank of the top five solutions
for AC, ACSC, CVaR (with �= 0005), and robust, with � =

001 for all methods. Recall that there are 102 total recipes,
so the average rank can range from 3 to 100, where smaller
values are preferred. As can be seen from this figure, the
AC, ACSC, and CVaR methods are competitive, with the
CVaR method slightly better than the other two for large � ,
and the AC method better than the other two for small � .
The ACSC and CVaR methods are also most robust to noise
than the AC method. Since these methods better account for
response error and inconsistencies, they logically perform
better with � > 0.

The robust method is strictly dominated by the other
methods, but it is very consistent regardless of the amount
of noise. Additionally, the numerical results in the appendix
give the standard deviation of the methods. The CVaR
method has a consistently lower standard deviation than the
traditional AC method, and the robust method has a sig-
nificantly lower standard deviation than all other methods.
This provides evidence that the new methods are more risk
averse than the traditional analytic center approach.
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Figure 2. Plot of the CVaR at �= 5% values for selec-
tive methods and parameters.
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Figure 3. Plot of the CVaR at � = 20% values for
selective methods and parameters.
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Figures 2 and 3 give the conditional value at risk (CVaR)
for �= 5% and for �= 20%, respectively. We use this as a
risk measure to compare how loss averse each of the meth-
ods are. The lower the CVaR value (meaning that the worst-
case solutions have better ranks), the more loss averse a
method is considered to be.

Figure 2 shows that for almost all levels of response
error, the CVaR method strictly dominates the other meth-
ods for the worst 5% of cases. The AC method is slightly
better for small response error, and the robust method is
competitive for high response error. Figure 3 shows simi-
lar behavior, but the robust method is not as strong. This
shows us that the CVaR method is able to nicely balance
robustness with optimality, as it was designed to do.

When considering all three plots together, we would
argue that for small response error (0 < � ¶ 002), the
AC approach is the best on average, as expected. But the
CVaR approach starts looking better as the response error
increases in this interval. For moderate to high response
error (002 <� ¶ 005), the CVaR method would be the best
choice. It has the best performance when considering both

the average value and CVaR. Overall, given that we expect
some response error from the users, we would argue that
the CVaR approach shows the best numerical results, in
terms of losses and average performance.

5. Concluding Remarks
We have developed an optimization-based approach for
preference learning that incorporates techniques and obser-
vations from many different fields. Our approach addresses
some of the key observations of preference learning in
behavioral economics: people are loss averse, are inconsis-
tent, and evaluate outcomes with respect to deviations from
a reference point. We have shown how mixed binary opti-
mization can be used to correct for inconsistent behavior,
choice-based conjoint analysis can be used in an adaptive
questionnaire to dynamically select pairwise questions, and
robust linear optimization and CVaR can model loss averse
behavior.

Furthermore, we gave empirical evidence from an online
software we developed that strives to model human prefer-
ences in a realistic situation. We have shown that the CVaR
approach in particular performs very well, and is more
robust to noise in the responses and is more loss averse
than the traditional analytic center approach.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1209.
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